Cultured meat, also called clean meat, synthetic meat or in vitro meat, is meat grown from in vitro animals cell culture instead of from slaughtered animals. It is a form of cellular agriculture.
Cultured meat is produced using many of the same tissue engineering techniques traditionally used in regenerative medicine. The concept of cultured meat was popularized by Jason Matheny in the early 2000s after co-authoring a seminal paper on cultured meat production and creating New Harvest, the world's first non-profit organization dedicated to supporting in vitro meat research.
In 2013, Mark Post, professor at Maastricht University was the first to showcase a proof-of-concept for in-vitro lab grown meat by creating the first lab-grown burger patty. Since then several cultured meat prototypes have gained media attention, however, because of limited dedicated research activities, cultured meat has not yet been commercialized. In addition, it has yet to be seen whether consumers will accept cultured meat as meat.
Video Cultured meat
Nomenclature
Besides cultured meat and in vitro meat, the terms vat-grown and lab-grown meat have all been used by various outlets to describe the product.
Clean meat is an alternative term that is preferred by some journalists, advocates, and organizations that support the technology. According to the Good Food Institute, the name better reflects the production and benefits of the meat and surpassed "cultured" and "in vitro" in media mentions as well as Google searches.
Maps Cultured meat
History
20th century
The theoretical possibility of growing meat in an industrial setting has long captured the public imagination. Winston Churchill suggested in 1931: "We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium."
In vitro cultivation of muscular fibers was performed as early as 1971 by Russell Ross. Indeed, the abstract was "Smooth muscle derived from the inner media and intima of immature guinea pig aorta were grown for up to 8 weeks in cell culture. The cells maintained the morphology of smooth muscle at all phases of their growth in culture. After growing to confluency, they grew in multiple overlapping layers. By week 4 in culture, microfibrils (110 A) appeared within the spaces between the layers of cells. Basement membrane-like material also appeared adjacent to the cells. Analysis of the microfibrils showed that they have an amino acid composition similar to that of the microfibrillar protein of the intact elastic fiber. These investigations coupled with the radioautographic observations of the ability of aortic smooth muscle to synthesize and secrete extracellular proteins demonstrate that this cell is a connective tissue synthetic cell." The culturing of stem cells from animals has been possible since the 1990s, including the production of small quantities of tissue which could, in principle be cooked and eaten. NASA has been conducting experiments since 2001, producing cultured meat from turkey cells. The first edible sample was produced by the NSR/Touro Applied BioScience Research Consortium in 2002: goldfish cells grown to resemble fish fillets.
In 1998 Jon F. Vein of the United States filed for, and ultimately secured, a patent (US 6,835,390 B1) for the production of tissue engineered meat for human consumption, wherein muscle and fat cells would be grown in an integrated fashion to create food products such as beef, poultry and fish.
Early 21st century
In 2001, dermatologist Wiete Westerhof from the University of Amsterdam, medical doctor Willem van Eelen, and businessman Willem van Kooten announced that they had filed for a worldwide patent on a process to produce cultured meat. In the process, a matrix of collagen is seeded with muscle cells, which are then bathed in a nutritious solution and induced to divide. Scientists in Amsterdam study the culture medium, while the University of Utrecht studies the proliferation of muscle cells, and the Eindhoven University of Technology is researching bioreactors.
In 2003, Oron Catts and Ionat Zurr of the Tissue Culture and Art Project and Harvard Medical School exhibited in Nantes a "steak" a few centimetres wide, grown from frog stem cells, which was cooked and eaten.
The first peer-reviewed journal article published on the subject of laboratory-grown meat appeared in a 2005 issue of Tissue Engineering.
In 2008, PETA offered a $1 million prize to the first company to bring lab-grown chicken meat to consumers by 2012. The Dutch government has put US$4 million into experiments regarding cultured meat. The In Vitro Meat Consortium, a group formed by international researchers interested in the technology, held the first international conference on the production of cultured meat, hosted by the Food Research Institute of Norway in April 2008, to discuss commercial possibilities.Time magazine declared cultured meat production to be one of the 50 breakthrough ideas of 2009. In November 2009, scientists from the Netherlands announced they had managed to grow meat in the laboratory using the cells from a live pig.
As of 2012, 30 laboratories from around the world have announced that they are working on cultured meat research.
The first cultured beef burger patty, created by Dr. Mark Post at Maastricht University, was eaten at a demonstration for the press in London in August 2013. It was made from over 20,000 thin strands of muscle tissue. This burger cost Dr. Post over $300,000 to make and over 2 years to produce.Two other companies have also begun to culture meat; Memphis Meats in the US and SuperMeat in Israel.
As of February of 2017, a recent report has shown that the price of these cultured burgers has dropped dramatically. Going from roughly over $300,000 to $11.36 in just 3 and a half years. This cost is now only 9-10 times more expensive per pound than standard ground beef.
First public trial
On August 5th 2013, the world's first lab-grown burger was cooked and eaten at a news conference in London. Scientists from Maastricht University in the Netherlands, led by professor Mark Post, had taken stem cells from a cow and grown them into strips of muscle which they then combined to make a burger. The burger was cooked by chef Richard McGeown of Couch's Great House Restaurant, Polperro, Cornwall, and tasted by critics Hanni Rützler, a food researcher from the Future Food Studio and Josh Schonwald. Rützler stated,
There is really a bite to it, there is quite some flavour with the browning. I know there is no fat in it so I didn't really know how juicy it would be, but there is quite some intense taste; it's close to meat, it's not that juicy, but the consistency is perfect. This is meat to me... It's really something to bite on and I think the look is quite similar.
Rützler added that even in a blind trial she would have taken the product for meat rather than a soya copy.
Tissue for the London demonstration was cultivated in May 2013, using about 20,000 thin strips of cultured muscle tissue. Funding of around EUR250,000 came from an anonymous donor later revealed to be Sergey Brin. Post remarked that "there's no reason why it can't be cheaper...If we can reduce the global herd a millionfold, then I'm happy".
Further progress from startups
Since the first public trial, several startups have made advances in the field. Mosa Meat co-founded by Mark Post continuous research with a focus on cultured beef. The company was able to significantly lower the costs of production.
Memphis Meats, a Silicon Valley startup founded by a cardiologist, launched a video in February 2016 showcasing its cultured beef meatball. In March 2017, it showcased chicken tenders and duck a l'orange, the first cultured poultry-based foods shown to the public.
An Israeli company, SuperMeat, ran a viral crowdfunding campaign in 2016 for its work on cultured chicken.
Finless Foods, a San Francisco based company aimed at cultured fish, was founded in June 2016. In March 2017 it commenced laboratory operations and progressed quickly. Director Mike Selden said in July 2017 to expect bringing cultured fish products on the market within two years (by the end of 2019).
In March 2018, JUST, Inc. (in 2011 founded as Hampton Creek in San Francisco) claimed to be able to present a consumer product from cultured meat by the end of 2018. According to CEO Josh Tetrick (a vegan) the technology is already there, and now it is merely a matter of applying it. Just has about 130 employees and a research department of 55 scientists, where lab meat from poultry, pork and beef is being developed. They would have already solved the problem of feeding the stemcells with only plant resources. Just receives sponsoring from Chinese billionaire Li Ka-shing, Yahoo! cofounder Jerry Yang and according to Tetrick also from Heineken International amongst others.
Production
There are three stages in the production of cultured meat.
Starter cells
The initial stage of growing cultured meat is to collect cells that have a rapid rate of proliferation. Such cells include embryonic stem cells, adult stem cells, myosatellite cells, or myoblasts. Stem cells proliferate the quickest, but have not yet begun development towards a specific kind of cell, which creates the challenge of splitting the cells and directing them to grow a certain way. Fully developed muscle cells are ideal in the aspect that they have already finished development as a muscle, but proliferate hardly at all. Therefore, cells such as myoblast cells are often used as they still proliferate at an acceptable rate, but also sufficiently differentiate from other types of cells.
Growth medium
The cells are then treated by applying a protein that promotes tissue growth. They are then placed in a culture medium, in a bio-reactor, which is able to supply the cells with the energetic requirements they need.
Scaffold
To culture three-dimensional meat, the cells are grown on a scaffold. The ideal scaffold is edible so the meat does not have to be removed, and periodically moves to stretch the developing muscle, thereby simulating the animal body during normal development.
Other considerations
Once this process has been started, it would be theoretically possible to continue producing meat indefinitely without introducing new cells from a living organism. It has been claimed that, conditions being ideal, two months of cultured meat production could deliver up to 50,000 tons of meat from ten pork muscle cells.
Cultured meat production requires a preservative, such as sodium benzoate, to protect the growing meat from yeast and fungus. Collagen powder, xanthan gum, mannitol and cochineal could be used in different ways during the process.
The price of cultured meat at retail outlets like grocery stores and supermarkets may decrease to levels that middle-class consumers consider to be "inexpensive" due to technological advancements.
Research
Challenges
The science for cultured meat is an outgrowth of the field of biotechnology known as tissue engineering. The technology is simultaneously being developed along with other uses for tissue engineering such as helping those with muscular dystrophy and, similarly, growing transplant organs. There are several obstacles to overcome if it has any chance of succeeding; at the moment, the most notable ones are scale and cost.
- Proliferation of muscle cells: Although it is not very difficult to make stem cells divide, for meat production it is necessary that they divide at a quick pace, producing the solid meat. This requirement has some overlap with the medical branch of tissue engineering.
- Culture medium: Proliferating cells need a food source to grow and develop. The growth medium should be a well-balanced mixture of ingredients and growth factors. Scientists have already identified possible growth media for turkey, fish, sheep and pig muscle cells. Depending on the motives of the researchers, the growth medium has additional requirements.
- Commercial: The growth medium should be inexpensive to produce. A plant-based medium may be less expensive than fetal bovine serum.
- Animal welfare: The growth medium should be devoid of animal sources (except for the initial "mining" of the original stem cells).
- Non-Allergenic: While plant-based growth media are "more realistic," will be cheaper, and will reduce the possibility of infectious agents, there is also the possibility that plant-based growth media may cause allergic reactions in some consumers.
- Bioreactors: Nutrients and oxygen need to be delivered close to each growing cell, on the scale of millimeters. In animals this job is handled by blood vessels. A bioreactor should emulate this function in an efficient manner. The usual approach is to create a sponge-like matrix in which the cells can grow and perfuse it with the growth medium.
Differences from conventional meat
Health
Large-scale production of cultured meat may or may not require artificial growth hormones to be added to the culture for meat production.
Researchers have suggested that omega-3 fatty acids could be added to cultured meat as a health bonus. In a similar way, the omega-3 fatty acid content of conventional meat can also be increased by altering what the animals are fed. An issue of Time magazine has suggested that the cell-cultured process may also decrease exposure of the meat to bacteria and disease.
Due to the strictly controlled and predictable environment, cultured meat production has been compared to vertical farming, and some of its proponents have predicted that it will have similar benefits in terms of reducing exposure to dangerous chemicals like pesticides and fungicides, severe injuries, and wildlife.
Artificiality
Although cultured meat consists of genuine animal muscle cells that are the same as in traditional meat, consumers may find such a high-tech approach to food production distasteful (see appeal to nature). Cultured meat has been disparagingly described as 'Frankenmeat'.
If cultured meat turns out to be different in appearance, taste, smell, texture, or other factors, it may not be commercially competitive with conventionally produced meat. The lack of fat and bone may also be a disadvantage, for these parts make appreciable culinary contributions. However, the lack of bones and/or fat may make many traditional meat preparations, such as buffalo wings, more palatable to small children.
Environmental
Research has suggested that environmental impacts of cultured meat would be significantly lower than normally slaughtered beef. For every hectare that is used for vertical farming and/or cultured meat manufacturing, anywhere between 10 and 20 hectares of land may be converted from conventional agriculture usage back into its natural state. Vertical farms (in addition to cultured meat facilities) could exploit methane digesters to generate a small portion of its own electrical needs. Methane digesters could be built on site to transform the organic waste generated at the facility into biogas which is generally composed of 65% methane along with other gasses. This biogas could then be burned to generate electricity for the greenhouse or a series of bioreactors.
A study by researchers at Oxford and the University of Amsterdam found that cultured meat was "potentially ... much more efficient and environmentally-friendly", generating only 4% greenhouse gas emissions, reducing the energy needs of meat generation by up to 45%, and requiring only 2% of the land that the global meat/livestock industry does. The patent holder Willem van Eelen, the journalist Brendan I. Koerner, and Hanna Tuomisto, a PhD student from Oxford University all believe it has less environmental impact. This is in contrast to cattle farming, "responsible for 18% of greenhouse gases" and causing more damage to the environment than the combined effects of the world's transportation system. Vertical farming may completely eliminate the need to create extra farmland in rural areas along with cultured meat. Their combined role may create a sustainable solution for a cleaner environment.
One skeptic is Margaret Mellon of the Union of Concerned Scientists, who speculates that the energy and fossil fuel requirements of large-scale cultured meat production may be more environmentally destructive than producing food off the land. However, S.L. Davis has speculated that both vertical farming in urban areas and the activity of cultured meat facilities may cause relatively little harm to the species of wildlife that live around the facilities. Dickson Despommier speculated that natural resources may be spared from depletion due to vertical farming and cultured meat, making them ideal technologies for an overpopulated world. Conventional farming, on the other hand, kills ten wildlife animals per hectare each year. Converting 4 hectares (10 acres) of farmland from its man-made condition back into either pristine wilderness or grasslands would save approximately 40 animals while converting 1 hectare (2 acres) of that same farmland back into the state it was in prior to settlement by human beings would save approximately 80 animals.
The role of genetic modification
Techniques of genetic engineering, such as insertion, deletion, silencing, activation, or mutation of a gene, are not required to produce cultured meat. Furthermore, cultured meat is composed of a tissue or collection of tissues, not an organism. Therefore, it is not a GMO (Genetically Modified Organism). Since cultured meats are simply cells grown in a controlled, artificial environment, some have commented that cultured meat more closely resembles hydroponic vegetables, rather than GMO vegetables.
More research is being done on cultured meat, and although the production of cultured meat does not require techniques of genetic engineering, there is discussion among researchers about utilizing such techniques to improve the quality and sustainability of cultured meat. Fortifying cultured meat with nutrients such as beneficial fatty acids is one improvement that can be facilitated through genetic modification. The same improvement can be made without genetic modification, by manipulating the conditions of the culture medium. Genetic modification may also play a role in the proliferation of muscle cells. The introduction of myogenic regulatory factors, growth factors, or other gene products into muscle cells may increase production past the capacity of conventional meat.
To avoid the use of any animal products, the use of photosynthetic algae and cyanobacteria has been proposed to produce the main ingredients for the culture media, as opposed to the very commonly used fetal bovine or horse serum. Some researchers suggest that the ability of algae and cyanobacteria to produce ingredients for culture media can be improved with certain technologies, most likely not excluding genetic engineering.
Ethical considerations
The Australian bioethicist Julian Savulescu said "Artificial meat stops cruelty to animals, is better for the environment, could be safer and more efficient, and even healthier. We have a moral obligation to support this kind of research. It gets the ethical two thumbs up."Animal welfare groups are generally in favor of the production of cultured meat because it does not have a nervous system and therefore cannot feel pain. Reactions of vegetarians to cultured meat vary: some feel the cultured meat presented to the public in August 2013 was not vegetarian as fetal calf serum was used in the growth medium.
Independent inquiries may be set up by certain governments to create a degree of standards for cultured meat. Laws and regulations on the proper creation of cultured meat products would have to be modernized to adapt to this newer food product. Some societies may decide to block the creation of cultured meat for the "good of the people" - making its legality in certain countries a questionable matter.
Cultured meat needs technically sophisticated production methods making it harder for communities to produce food self-sufficiently and potentially increasing dependence on global food corporations.
Religious considerations
Jews disagree whether cultured meat is kosher (food that may be consumed, according to Jewish dietary laws). However, most rabbis agree that if the original cells were taken from a kosher animal then the cultured meat will be kosher. Some even think that it would be kosher even if coming from non-kosher animals like pigs. Some Muslim scholars have stated that cultured meat would be allowed by Islamic law if the original cells and growth medium were halal.
Economic
The production of cultured meat is currently very expensive - in 2008 it was about US$1 million for a piece of beef weighing 250 grams (0.55 lb) - and it would take considerable investment to switch to large-scale production. However, the In Vitro Meat Consortium has estimated that with improvements to current technology there could be considerable reductions in the cost of cultured meat. They estimate that it could be produced for EUR3500/tonne (US$5424/tonne in March 2008), which is about twice the cost of unsubsidized conventional European chicken production.
In a March 2015 interview with Australia's ABC, Mark Post said that the marginal cost of his team's original EUR250,000 burger was now EUR8.00. He estimates that technological advancements would allow the product to be cost-competitive to traditionally sourced beef in approximately ten years. In 2016, the cost of production of cultured beef for food technology company Memphis Meats was $18,000 per pound ($40,000/kg). As of June 2017 Memphis Meats reduced the cost of production to below $2,400 per pound ($5,280/kg).
In fiction
Cultured meat has often featured in science fiction. The earliest mention may be in Two Planets (original German title: Auf Zwei Planeten) (1897) by Kurd Lasswitz, where "synthetic meat" is one of the varieties of synthetic food introduced on Earth by Martians. Other notable books mentioning artificial meat include Ashes, Ashes (1943) by René Barjavel; The Space Merchants (1952) by Frederik Pohl and C.M. Kornbluth; The Restaurant at the End of the Universe (1980) by Douglas Adams; Le Transperceneige (Snowpiercer) (1982) by Jacques Lob and Jean-Marc Rochette; Neuromancer (1984) by William Gibson; Oryx and Crake (2003) by Margaret Atwood; Deadstock (2007) by Jeffrey Thomas; Accelerando (2005) by Charles Stross; Ware Tetralogy by Rudy Rucker; and Divergent (2011) by Veronica Roth.
In film, artificial meat has featured prominently in Giulio Questi's 1968 drama La morte ha fatto l'uovo (Death Laid an Egg) and Claude Zidi's 1976 comedy L'aile ou la cuisse (The Wing or the Thigh). "Man-made" chickens also appear in David Lynch's 1977 surrealist horror, Eraserhead. Most recently, it was also featured prominently as the central theme of the movie Antiviral (2012).
The Starship Enterprise from the TV and movie franchise Star Trek apparently provides a synthetic meat or cultured meat as a food source for the crew, although crews from The Next Generation and later use replicators.
In the ABC sitcom Better Off Ted (2009-2010), the episode "Heroes" features Phil (Jonathan Slavin) and Lem (Malcolm Barrett) trying to grow cowless beef.
In the videogame Project Eden, the player characters investigate a cultured meat company called Real Meat.
In the movie "GalaxyQuest", during the dinner scene, Tim Allen's character refers to his steak tasting like "real Iowa beef".
In popular culture
Cultured meat was a subject on an episode of the Colbert Report on 17 March 2009.
In February, 2014, a biotech startup called BiteLabs ran a campaign to generate popular support for artisanal salami made with meat cultured from celebrity tissue samples. The campaign became viral on Twitter, where users tweeted at celebrities asking them to donate muscle cells to the project. Media reactions to BiteLabs variously identified the startup as a satire on startup culture, celebrity culture, or as a discussion prompt on bioethical concerns. While BiteLabs claimed to be inspired by the success of Sergey Brin's burger, the company is seen as an example of critical design rather than an actual business venture.
In late 2016, cultured meat was involved in a case in the episode "How The Sausage Is Made" of CBS show Elementary.
See also
- BioArt
- In vitro toxicology
- List of meat substitutes
- Quorn
- Tissue culture
- Timeline of cellular agriculture
- SuperMeat
- New Harvest
- The Good Food Institute
References
External links
- Modern Agricultural Foundation hatches chicken meat in situ
- cultured meat Consortium
- The Good Food Institute
- New Harvest
- The Modern Agriculture Foundation
Source of article : Wikipedia